S-Bond Technologies’ active solder joining solutions have been used by by Fermi National Accelerator Laboratory for joining carbon:carbon and pyrolytic graphite in its particle accelerator program. The improved Forward Particle Detector (FPIX) is to be used in Compact Muon Solenoid (CMS) and used for high-resolution, 3D tracking points, essential for pattern recognition and precise vertexing, all embedded in a hostile radiation environment.
The challenge posed by Fermi Lab to S-Bond Technologies, was to create high thermal conductivity metallic bonds between the ends of thermally pyrolytic graphite (TPG) blades and carbon:carbon composite end walls of a turbine nozzle like assembly. Figure 1(a-b) shows ¼ of a full assembly that was built using S-Bond joining and S-Bond 220 solder and processing. S-Bond’s active solder processing was successfully demonstrated and is in the technical roadmap for assembling Fermi Lab’s particle accelerator FPIX. In this work, regular adhesives were not conductive and would off-gas in the extremely high vacuum environments, hence the selection of the active metal solder filler, S-Bond 220.
Figures 2 – 4 show various assembly steps that all utilize the S-Bond carbon:carbon joining process described elsewhere in our technical blog. The process started with the S-Bond metallization on the TPG blades, Figure 2, and the C:C nozzle endwall slots
where the blades were inserted, Figure 3. After metallization, the blade and nozzle segments were inserted into a heated alignment press, Figure 4. After heating and insertion, the nozzle segment/ TPG blade assembly was cooled and removed. Figures 1a – b, above, showed the final fully bonded assembly.
Please contact us if you have challenging graphite / carbon joining applications where S-Bond Technologies active solders can solve your joining problems.